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By Paul Kuhn
—

SUMIIARY ‘-

The analysis of various types of shell under combined
bending and torsion is discussed. The calculation and the
use of the shear center are touched upon as incidental

.-

problems. Twelve fully -worked numerical examples are given
in an appendix. —.______

INTR03UCYI OH ..

The literature on shell analysis is quite scattered
and some of it is not easizy availa%le, A definite n“eed
therefore exists for setting down in a reasonably compreh-
ensive, ‘out concise, manner the -principles and the meth-
odg useti in the various phases of shell analysis. The
present paper deals with the distribution of the stresses,
chiefly the shearing stresses, over the cross sections of
cantilewr shells of constant cross section subjected. to
combined %ending and torsion. .—-—=

.
The subject matter IS far from being new: as the ap-

.

pended. bi~liography indicates, the main principles Were
well established in 1931. Continued discussion in the
technical literature indicates, however, that the knowl-
edge of the subject is not so widely disseminated as it
needs to %0. It is hopot that thomannor of presentation
chosen for this paper, in particular tho collection of
fully worked numorico,l oxamplcs’, will help materially to I
achic~e the ultimate goc,l, namely, to provih all prac-
ticing engineers with a working knowledge of the subject.

.....; ._._. ...... ... .....=..
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TE~ ANALYSIS OF SHELLS

Basic Assumptions and Theories

Typical cases of the pr”oblem to be treated are shown
in figure l(a). As indicated iIy the figure, the shell
will ‘De assumed to have a constant cross section. It will
also he assumed, in general, thtit the material effective
in bending is disposed symmetrically about the horizontal
axis. The horizontal and the ,vertical axes will then %e
principal axes, and the load will be assumed to act verti-
cally.

For purposes of stress analysis, the structures are
idealized in the usual manner. A certain effective width
of-slcin is added to each.actual longitudinal or flange to
obtain the cross-sectional area effective in banding; this
effective area is assumed to he concentrated at the c~n- ●

troid. The skin itself is assumed to carry only shear.
Idealized secti~ns aro represented as in figure l(b).

Stresses caused %y %ending are obtained in first ap-
proximation by applying the engineering theory of bending
to the idealized crpss sections. This theory is based on
the assumptions -that plane cross sections remain plane and

.

that Hookejs law applies. The theory leads to the formu-
las, fmr the normal stresses due -to bending, *

My
o-=-y

and, for the, shear stresses due to bending,

(1)

~2a).. --

The derivation of these formulas can be found in any text-
book on strength of materials.

It should be noted that, in the computation of the
static moments Q as well as of the moments of--i.nertfa 1,
consideration is given only to the material assumed to be
effective in bending. .

In shell structures, it is often convf3nif3nt to uge,
not the shear stress T, but the shear force per inch
length of sheet, which will be designated by

_-
*

v
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and which will le callmed.the ‘rshear-force intensity” or,
briefly, ‘shear iqte,n,si”ty.ti Formula (2a) then hecexnes

(2)

for open sectJ~nsh:.wh8re % = %.” ‘“” “ ... .,..:, “.. . . i. _-...-.,....... ,“. .

-,. . . ‘?.:,--*,,, . .,, :.
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. ..

K
b“

JL JL _lj/

-, . .
.._
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(b)
Figure 1.
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In the case of a closed cross section, an equivalent for-
mula Is o%tained by considering the equilibrium of hori-
zontal forces. on a piece of the cros.a section as shown in
figure 2

(2%)

where Q is now the static moment about the neutral axis
of the (effective) areas of the longitudinal lYing be-
tween the skin pa~els r ‘and m “where the
ties are measured.

Figure 2.

shear ~ntensi-

Fm+&?m

F

Shear stresses caused by torsion in a tube (fi* 3)
are obtained by the well-knotvn formula

{3)

applicable to thin-wall tubes. !l?heangle of twist per
unit length of tube is given %y

. ----~... ___
eT

‘m

where the torsion consthnt J is defined by

J
4A==—

!

its-.
t
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s

the symbol $ denoting an integration around the entire

circumference of the tube.

(-
..

T .,

.-i

Fig.we 3.
-—

—— —

In practical cases, the thickness is constant over large
parts of the circumference; the calculation of the line
integral therefore reduces to the addition of a few..frac-
tions of the type s/t. Substitute (3) into the formula
for angle of twist, and there is obtained

.

In the most general case, G and q may be variable
along the circumference. Variation of G may be due to

+ the use of different materials or to the formation of
diagonal-tension fields. Variation of q nay be caused

\. %y attaching other torsion tubes to form multicellular
tubes. In the general case, tho formula for twist becomes

(4a)

or 01‘-m ! $ as (4%)
. e
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where Ge is the eff-gc.%ive shear stiffness. It should be
noted that longitudinal have no influence in the simple

.

torsian pro%lem.

The derivation of these torsion formulas, which may
r

be found in a number of standard textbooks, is based cn
the assumptions that the torques are applied as shear
stresses distributed over the end faces according to the
theory and that the cross sections are free to follow the
tendency to warp that exists iu most cases. In practical
structures , it is usually not possfble to compLy with these
assumptions. The root section is usually built in more or
less completely, and the resulting restraint on the warp-
ing causes normal stresses, or bending stresses, and a ro-

,

distribution of shearing skressos (reference 1). These
effects disappear quite rapidly with increasing distance
from the root and are usually negligible at a distance
fram the root equal to, or greater than, the width of the
box . At the root, however, they may be quite appreciable.

The commfinly accepted theory of shells in combiaed
bending and torsion uses the simple theories of bending ?
and torsion. Corrections may therefore be necessary near
the root to account for the effects of restraint against
warping just mentioned, which modify the simple theory of
torsion. Corrections may also le necessary to account for

.

the effects of shear deformation, which modify the simplo
bending theory (refbrence 2). ●

.
An emphatic ward of warning must be given relating

to the use of the thbories-of b-ending and torsion. These
theories give fairly reliable results,. if- they are used
with judgment. The theory that the entire cross section
acts as a.unit naturally cannot. be expected to hold very
well if the joints are not perfect or if_ the changes in
dimensions and shape are too sudden. Nose covors attached
wit-h piano hinges and trailing edgas with their acute an-
gles at the tip& are ttie mos’t usual examples of- structural
components that cannot be expected to be fully effective
either in bending or iri torsion.

Sign Conventions

External forcos will be taken as positive when act=
ing upward.- External torques will be taken as positive
when clockwise.



N.A. C,.A. !L!echaical Note No. 691 7

Bowls notation will be used to designate cells and,
walls. The cells will le designated by letters from left
tO right, starting with Ila,ll

w
Shear stresses and forces in ~he walls of a cell will

be takqn as positive when going clo.ckw’ise aro~d the cell”
If a wall.belongs to two cells, the sign wfll he e$tah-
lished by assuming the wall to belong to the left-hand
cell.

.

*

Line integre,ti~ns will he performed in a clockwise
direction. It should he noted that, in .a wall %el*nging
to two cells, the sign of thp shear must be reversed in.
the right-hand cell when performing a l$rie integration, .
because the arrow of the positive shear direction as e$-
%ablished will oppose the sense of positive direction of
integration. In doubtful cases, ana preferably in all
eases, free-body diagrams should be drawn indicating the
directions of all forces. The use of such diagrams wil~
materially reduce the chances of errors in sign and ‘Ni~l
do away with the necessity of adhering >i.gldly to a set
co~~ention of signs, provided that care is takgn in ~rit-
ing the equations of equilibrium. .

Note that, in cases where the sign convention is “ad: :
hered to rigidly, the %asic equation (3) must be written

T
..

!I=-— 2A

.

,;
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The Open She Ll

Open shells (fi~. 4) can be analyzed hy applying
formulas (1) and (2). After the shear forces in each
part of the cross section have been found, the rosultan%
of the internal shear forces can %0 found %y ordinary
statics, This resultant lies on a vertical line distant
e from tho open wall of tho shell. The point whoro this
rosultaat intersects the horizontal axis is called tho

flIIshear Centero The external load P must ppss through
the shear center if–%hero is to be no torsion. The tor-
sional stiffness and strength opan open section being
oxtromely small, it is necessary to koop the external
loud very close to tho shear contor. The “knowlodgo of
the shear center is therefore important for an opon sec-
tion. . .

(a)

JJjT
e

I
---h--

.-l

(b)

I?igure5.

(c) Fixre4!” (e) ‘

In curved sheets with a
constant shear intensity q,
such as the webs of tho sec-
tions shown in figures 4(b)
and 4(c), it is ofton conven-
ient to replace the shear
stresses acting on the curved
cross section by a resultant
force. Integrating horizon-
tal components, vertical com-
ponents, and moments of the
elementary shear forces,
there is obtained (fig. 5)
the horizontal resultant

-!

..

.

.
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.,, E=o, .
.

● ✍

.-

the vertical resultant
. . .

v= qh (5)

and the torque moment a%out any goint

T = 2qAo
.(6)

whfch gives as the location of the resultant force
R = V the distance

2A.~
e = ——

h

from the open face of the shell.
A. is the area included between

and the o~en face. It ShOtid ‘ie

(7)
.-

In these formulas,
the contour of tiy= sheet
noted that the formulas

do not apyly to the entire sections sfiown in figures 4(d)
and 4(e) su%jected to bending loads, %e~ause the shear ‘“

-.—

intensity would not %e constant. The formulas would ap-
ply only to the part of the section included between the
two longitutlinals next to the neutral axis.

Numerical examples 1 to 5 illustr~tethe analysis ok
open sections.

/. ..

.—..

.

.,
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The l?wo-Flange,, Single-Cell Box (D-Section) .

The two-flange, single-cell section (fig. 6) may be
considered as a combination af a beam and a torsion tube.
The beam can take Yending moments only in a plane paral-

*

Iel to the plane of tile two flanges, so that the load P
producing the bending must le parallel ta this plane. The
torsion tube can take care of the torsion existing if tho
load

,-
P is not applied at the shear center of the shell.

The-total shear force acting on any cross section may
%e resolved into tTVO components (fl.g. 6(%)): the shear
force ST acting in the plane webs and the shear force
s~ in the nose sheet acting at the shear con’mn? of the
nose sheet; these forces ar~ known as to location and di-
rection lJut unknown as to inagnituto. There arc available
two equations of static equilibrium to find them:

,xv.l?- s~ + SN = o

zM=- Pd+SNe=O.

giving

and, finally

.

‘1? = P+ = P= -
e 2Aa

Sw = P+SN = P (1 +--&’--- ,

SN d
7N=—-=p--—htN 2AatN

SW

(
1 d

)
T~ = –— = -p– –+ —

htW tW h ~Aa

.

4

The flange stresses are fowd by using equation (1), \vhich
simplifies to

M
a=— hAF

AF being the effective area of the flange. ,

.
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If the angle of twist per unit length d% is deeired,
it can be found by subst~tu~~ng (8) and (9) into formula

.

(4b)

[

Pdp
61—

P
= ~~~ 2AatN ‘~ (

l+.=
2Aa )]

.

(lo)

assuming Ge = G for both webs and denoting %y p the
perimeter, or developed length, of the nose cont=r.

From equation (9) it can be concluded that the shear
stress in the plane web becomes zero if P is located at

d 2A=.—
h

which is the location of the shear center of the’ nose web
alone. Vice versa, if P is located at the shear center
of the plane we%, i.e., at the plane web or d = 0, the
shear stress in the nose web %ecomes zero.

Although the section shown in figure 6 is the most
common example of the two-flange single-cell section, it
is not the only one. Figure 7 shows another example, a
two-spar box with three-point attachment. Iq this case,
the spar attached with a single lJolt cannot act as a beam,
and tho box might be termed a llrectangular D-sectiou.;’

Analysis of the D-Secti~n by the Shear-Center Method

If the distance d is chosen so that the angle of
twist 0 becomes zero, the condition of lending without
torsion is obtained, and the distance do thus found lo-
cates the shear center, or the “elastic center, of the en-
tire section. Letting 8

do=-

A laad P applied at do
associated shear stresses

= o in equation (10),

mill cause only bending, the

being

~N3 = .-.— P
htN + ptW

Pp
‘WB = h(htN + ptW)

(12a)

.

.

.

—

—

(m) - - ‘
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A load “P applied at a distance. d “can .%e replaced by an
equal load ,P at do and a“ torque . . .

. .

. T = P(d - do)

The shear stresses caused by the torque can he calculated
t

%Y equation (3) and added to the stresses given %y eque,-
tions (12a) and (12b). Obviously this method of analysis
using the shear-center is much more lahoriouq than the di-
rect method of. analysis.

.Xxample 6 in the a~pe.ndix illustrates the analysis of
D-sections.

Since a single-cell tube is sufficient to take tor-
v- ——

sion, a two-cell tu%e (fig. 8) is statically Indeterminate.

n“?2
.’

.

,

c

.,.

-___& &&

(:)

.

Pigure 8.
.
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. .

In order to analyze it, imagine the ~wo ;eils to be split
open and unknown shears of the intensities qa = X and

q> = Y applied to” the cells. One sq”wtion for these two
unknowns is furnished b~,the static equation stating that
the sum of the torques must he zero; using equation (6),

xx2Aa +y x 2Ab+ T = O (13)
,.

An additional equation is obtai~ed”from the condition that
el,astic continuity must be preserve&, namely, that the an-
gle of twist of- cell a relative to ‘c-en b must ~o zero, -
or that the twist of cell a must equal that of cell b.

(14.) ..

Expressing_ Oa and e% .as functions of X and Y, lJY
using equation (“4b), as

The secona relation nocdod to find X and Y is o%tained
by equating these two expressions in conformance with (14).

If the angle Of t]vist-is”aesired, it is found by pub- . ‘
stituting the values for X and Y in the exprossio~ for
ea or for e~ . A

Xxample 7 j.llustrates the riumerical procedure.

The Two-Flanqk Two-Cell Shell ~

The analysis of the two-flange two~c”ell shell in com-
bined bending and torsion (fig. 9(a)) i.s closely analogous
to the analysis of the two-cell torsion tube. Imagine the
two cells to be split opea (fig. 9(1)) and the shears of
intensities X and Y applied. The load P located at
d is replaced by a load P located in t-he ylane of tho
flanges and a torque Pd. The shear intensity in the shear
web is then

q~ .x --Y+~- (15)

.

Ilquations (13) and (~”4) are aga~n used tO find the shear ,
intensities X and T, as in tho ca$e of” the torsion
tubo : the only di.ffaronce between the two cases lies in
tho appearance of tha: ~erm P/h in the web shear intensity. .
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.

.

It should %s notes in” figure 9(a) that there is only
a single ‘Dolt attaching the auxiliary r“ear sp”ar and that
the flanges of the rear spar ,are dotted, indicating “that
they do not enter into the c“alcul”ation.

Example 8 illustrates the “analysis of a two-flange
two-cell shell.

.
,

(a)
.

.

l---t

.—

“ Analysis of the ,Two-l?lange Two-Cell Shell “-
by the Shear-Center Metho&

The location.of the ,shear”center is found as before
from the condition that tho angle of twist must be zero”.

.-
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Equating 6a and ~b each to zero, two equations are ob-
tained instead of” the single eq~tion (Ix&). These two
equatiens together with (13) are sufficient to find the un-
known location do at which P mugt be-placed to produco
bending without torsion as well as the shear stres&es asso-
ciated with this special case of lending.

After the shear center has been found and the solu-
tions for bending only and for torque only have been com-
pleted, e.ny additional loading case to be investigated may
be broken up into a combination of bending only and tor-
sion only, as discussed fcr th-e two-flange, two-web shell.
The analysis of any giyen case then consists merely in
multiplying the stresses from the two basic solutions by
appropriate fac”tors and adding them. This method requires
less numerical work than setting up and solving equations
(13 ) and (14) for each case. Consequently,. the shear-
center method of ana~ysis saves time if a sufficient num-
ber of cases are investigated, SO. that the total time
saved on individual Caseg overbalances the time required
for finding the ghear c~nt-er and making the basic solutlons,

It might be pointed out- that the same advantages can
he had by using any ar%itrary-load case and the pure-

,

torsion case as basic cases. lf the arlftrary case chosen ,
as basic is for a load PI located at dl, then a load
P2 located at dz can be replaced .by a load Pa at dl
and a torque Pa (da-d, ). The analysis of additional cases

.

is therefore just as simple as if the shear-center method
had been used.

..
‘The shear-center method is illustrated by example 9.

The Three-I’lange Single-Cell Sh’ell

The single-cell S&lI with three flanges is of inter-
est as the practical example of a D~section capa%le of
taking bending in any ylane (fig. 10). This section cah
be easily analyzed for the general case of a section with-
out symmetry. The location of the resultant shear in each
we% is known from formula (7),
load

and tho equilib.rant of the
P c,?.nbe rosol~od into three,forqes along theso

lines by stati~s, If the load is pa~allel iG ihe plane of
two flanges, the third flange is unstressed, and tho shear
intensity q is. cofistant for the two webs joining the
third. flange. The analysisis then anqlogous to that of a
two-tlange shell.

.
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b,

\

.

.

--’-/ /fl a
“1v

c

sac

d
Figure 10

, The Multiflange Single-Cell Shell

f

P

-. .

The four-flange box (fig. 11) may be considered from
two points of view. If the upper cover is cut, the lower
cover will also drop out of action. The structure is then
the familiar two-spar wing. This structure is statically
determinate (for vertical loads), torsien ~eing taken care.

. of by one spar bending down and the other one bending UP-;
With the cover intact, the, structure is statically inde- :
terminate.

.’

In the commorily accepted. ,shell th?ory, the torsion
taken by opposite bending of the spars is neglected. Tor-
sion is assume~ to be absorbed entirely _by the four walls
acting together as a torsion tube. All flanges are assumed ‘“”
to act as a unit, namely, a single beam obeying the engi-
neering theory of bending. The shell is then, in princi-
ple, analogous to the, D-section, consisting of a. combina-
tion of a torsion tube and a beam, and is statically deter-
minate . This conclusion remains valid if there are longi-
tudinal attached to the cover sheets. Each longitudinal
introduces one more unknown shear stress in the sheet and
also one atditienal equation of equilibrium of forces along
the z axis. .

The justification for using this theory in preference
to the one first mentioned lies in the fact that, for all-

. metal stressed-skin wings, the torque taken IY differen-
tial %ending of the spars is very small compared with that
taken by the torsion tui)e”except near the root. In th6

. region of the root, corrections must %e made to allow for
this effect, as will he discussed later.
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4

P

r

d

A.

I’@Fl (b) F2+D2

Figure 11.

As exam~le, the ~quation for-the simple case of figure
11 17ill be developed,”

.
ET: P+s~-s~=o (a)

El&: -Pd + S3h + Saw = O (%)

Now

~~
s~ s

on flange lt dFl+~dz-+dz =0 (c)

EL on flange 2: dF2 -1-$- dz - ~ dz =0 (d)

.

.

.

.

,

.
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since the stresses in the two flanges are assumed to be
equal

Substituting (e) into (c) and (d)

From (q)

PA= S1 S3

iZI- ‘Y-==o
(f)

—.—

PA= S3 S2
——— .—
hA+w h=o

(g)

PAaw
s311.= S2W - --&--

Substituting into (b)

PAaw
-Pd + Saw - ~ + S2W = o

.

.

(16)

(17)

(18)

In the more general case of the trapezoidal %OX (fig. 12(a)),
the equations become .

ZM: -Pd + S3hl r + Saw = O

XLI:
s~, ‘ s ,

dFl+~&z-G~dz=O-
.-.

1

S3
dF2+~dz - $dz=O

a

In this case

.—
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so that

anii finally

Substituting

N.A.C.-l. Technical Note No. 691

(19 )

s3$
and the first equation then yields S1.

Figure 12.

If a number of st’ringers with a total cross-sectional
area A= aro uniformly distrilmtcd along tho width of- tho
cover sheets (fig. 12(3)), the formula for Sa becomes

he
r
a hlhaA2 hl (hl+2h2) .A3

Sa =P - + -—-— -1-——
hl+-ha L~ 1 (19a)

21 12 I

Since the analysis of a given case consists merely in
substituting numerical values into equations (16), (17),
and (18) , no examples will be given hero. If examples aro
desired, they may bo found in reference 3, which covers in
detail the analysis of-the four-flange box by the ehonr-
center method:

,
—
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The MWticellular Shell : ,

Inasmuch s,s the multiflange single-cell shell is stat-
ically determinate, the multi,cell shell i.s st~tically in-
determinate. The method “of “analysis is ahiilo”gous to that
used for the two-flange, multicell shell and will be il-
lustrated..%y.the example of a fo~q-f~ange, two-cell shell
(fig. 13(a)). ..: . . .! .,-,.

. . . . .. .1 . . .. .. .. . . . .
. . . . ,.. .-: ‘.. . . .,*

—
., ‘,.“ ., ,.” ,,

Figure 13. “,,..”
.

,.

. .1

, . .

Imagine each.cel.l cut open and
. X and Y applied. The transverse

loads Eil and 52 in the “two~’gptir

portional to the moments of inertia.

*

-.
,...,

. ...:-

shears of intensity
load P causes shear
webs, which are pro-

of these spars

..-_
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S1 11=Py and s= =“P 2;

with

(20)

The equations (4h) for angle of twist are written down,
and the condition of continuity

ea = E)b

furnishes one equati~n.. The second equation is found, as
%efore , from the static condition that the internal torque
must ‘o&lance the external torque.

Taking moments about Al

-Pd + Saw y 2AaX + 2AbY = O (21)

!l?heanalysis iS closely analogous to the analysis of the
two-flange, two-cell section previously discussed. The
only difference is that the shear inkensity in the rear

Sa
spar is now Y + ——h2 instead of Y.

Example 10 illustrates the analysis of a four-flange,
two-cell section %y the direct method. Example 11 illus-
trates the method of finding the shear center and the shear
stresses associated with %ending.

The procedure for more complicated cases (fig. 14) is
merely a simple extension of. tha procedure discussed, so
that no example wfll be required.

,

*

.

-.

.

.

.

Figure 14. —
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Corrections to Simple !Kheories @f
Bending and Torsion .

As mentioned before, the simple theories of bending
and of torsion used thus far may require corrections.
These corrections are important only in the inboard region
near the root, if they are important at all. Whenever they
are to be made, it is very advisable to separate bending
from torsion at the outset. Such a procedure will make
the calculations much clearer and will materially reduce
the danger of committing errors in sign. .. .

The flange material in box beams is usually distrib-
uted. across the cover in the form of individual stringers
or corrugated sheet. The bending action of such beams ‘“
differs from that assumed by the simple theory of bending,
because the sheet deforms un&er the shear stresses imposed
on it. The analysis of bending action under SUCh circum-
stances is discussed in reference 2 and no discussion will
be given here.

In tu%es subjected to torsion, the cross sections
usually have a tendency tcIwarp out of their original
planes. If this }Tarping is prevented ‘oy attaching the
tu%e to a rigid support, or bY conditions of symmetry in
the middle of the span, then longitudinal (normal) stresses
will arise, and the shear stresses will be redistributed..
Reference 4 gives a method of calculating the effects fop
cross sections of arbitrary shape, hut the method is of
limited usefulness. Methods of analyzing rectangular tubes
have been developed %y o,number of writers; th,e most irQ-
ports,nt reports dealing with the methods are summarized in
referenco 1. This reference also gives what appears to he
the ouly pu%lished experimental data. They do not agree
very Ivell wtth tho theory; fortunately, the effects of end
restraint are small in most practical cases, SO that they
need not be very accurately calculat~d.
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For a rectangular ”tube symmetrical about both axes,
such as shown in figure 15, the normal forces orI the cor-
ner flanges caused %y complete restraint may be calculated
by the formula o ..

.,
-—-

(22 )

.,.
(reference 1, equ&tion (3c) with G/X = 0.4): -The sign of
the stresses is determined from the rule that the walls
with the smaller. ratio of Vidth to thickness (in general,
the vertical walls) act like independent spars, a%SOr%ing
tho torque by bonding in opposite directions.

.

4

.

—

Figure 15.

.

The effect of the end restraint on the shear intensi-
ties is written most conveniently in the form .
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(23)
.—

obtainid by using equations (3c). (9), and (10) of refer-
ence 1; Aq is the correction to he applied to the shear
intensity calculated on the assum~tion of no restraint,
namely,

‘lT‘ZZ

The negati.vesign in (23) is used for the walls with the
larger ratio of width to thickness, in general the hori-
zontal walls.

In actual cases, the %OX will seldom he symmetrical
about %oth axes,
(22) and (23).

as assumed in the derivation of formulas
The simplest procedure in such a case will

be to use average values for %, c, tb , ana tc. This

procedure is somewhat unconser~ative, but formulas (22)
and (2%) are %asically conservative because they assume
infinitely clQsely spaced ‘bulkheads. Furthermore, except
in such cases as wings continuous across the center line
of the airplana, the root section will not-ho rigidly
built in, because there mill be play in the fittings and
elastic yielding in the fittings and in the contor sec-
tion.

Tho simple procedure outlinod here and used in ex-
ample 12 mhy, of courso,” be i~sufficiont in some cases;
a moro detailed treatment, ‘howevor, is beyond. the scope
of this paper.

Langley Memorial Aeronautical Laboratory,
National Advisory Committoo for Aeronautics,

Langley Field, Vs., January 20, 1939.

.
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APPENDIX

Example 1

Find the shear intensity and the shear center of the
section shown in figure 16 for a vertical load P.

I = M%a = 2 x +x 4 = 2 in.4

Q=A~=~x2=$in.”

By formula (2), the shear intensity is

In this simple case, the correct direction of the arrow can
be found by inspection, and the sign convention is not noedod.

The force E in tho leg (Fig~” 16(b)) is

H L p x 3 =:P=qw=4

Hx4 =XXP” x= 3 in.

or tho location e of the shear center e=x+-w=6 in. = 2w,
which agrees with fmrmula (7).

. .

t=.065
A= +

r

.’

h=4

.

,

—
-.

.*

.
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Example 2

27

.

Find the shear intensity and the shear center for the
section shown in figure 1’7.

Bow!s notation is used as indicated:

I =“2 x$
4

x 4+ 2 %* x 4 =4 in.

Q LX2=5
ac ‘4

Qah=~x2+:x2=l

The shear intensities are therefore

!I
PX+lp=-— =.

ac 4 8 —

The horizontal force H is

H =Q XW = ~Px3=
.8

:P
ac ,-

Taking moments a%out the lower left corner of the channel
as before, ..

px = Hh = 3PX4 3 in.
8

x=-
2 .

e 3=—
2

t=.065

+ 3 =4*in.

Figure 17.

3= —w2

b

1

a

(+--..4

.
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Example 3

Tind the shear intensities and the shear center of
the section shown in figure 18.

I = 6 in.4

Qad =: in.= = P X & lb./in.~ad ,

= 1 in.3 p x ~ It./in.Qac !lac =

E=q ..&dx 1.5 ‘t ~ac x 1.5 = g x 1.5 + : x 1.5 = :IJ
.

Px 3 p x 4 .:P=Hh=8

x = ~ in.
2“

as in the preceding case. The relation e = ~ w holds

for all channels, if the effective material is unifotimly
distributed along the legs of the channel.

(p) .

,

.

i

..

.

.

(a) Figure 18. *

.
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Example 4

Find the shear intensity and
section shown in figure 19. “

I = 2 AFRa in.4

Q = APR in.=

~ AFR
~ -- .— = & lb./fn.

2AFR=

Taking moments
of the circle

Pe . qxnRx

a%out the center

R =~R x nR X R

.-
2

in.

the shear center for the

l?igure19.

Example 5

Find the shear center of the section shown in figure
20. In this case, all the sheet is effective in bending.

I = ~ ~R3t in.4
1

Q(I = J6 Rtd9xR cos e=Rat sin 0 in.3
o

!K
gi

Rat sin 9 =P 2 ‘in e Ib/in
~0

= ‘x-+ mR3t-- fi R - I
R-

Taking moments shout the center of’
the circle -~

L!

t

Pe =jfi P~si~0’R’&6x R”
o e 4

.

- .
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~Xai71p106

Given the D-soctton
shown in figure 21.

(a) By direct analysis,
firid tho stresses in tho
section and tho anglo of
twist, assuming that no
buckling occurs.

(Y) Find the shear cen-
ter of the section, and
make the analysis by the
shear-center method.

(c) Tind the changes
caused .by the flat sheet
developing a full diag-
onal-tension field.

(a) Direct ana~ _.
.?= .- Find first theylo-
cation 0 of the shear
center of the nose by
formula (7’)

Figure 21.

,

.

.-

.—. :-_
.f

b

.

.-

Taking moments a%out the plane web

SN x 15.71 = Pd s 5,000 x 5 = 25s000 inm-lba

SN = 1,591 1%.

which gives

SW = 6,591 lb.

The shear stresses are therefore.

TN = ___1591 19244 lb./sq.in.
0.064 X 20 =

Tw.- 6591 10,300 lb./sq.in.
0.032..x 26 =

.—,--

.

The angle of- twist is obtained from the basic formula (4~)
●
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2X3 X1OOG [
1,244 X m X 10 + 10,300 X 201

.* x780

With G=4 X 106, this value becomes

3 = 195 x 10-6. radian per inch length?
k-

(b) ghear-c~nter analysis .- In this simple case, the
location of the shear center can he found from formula (11)

2 X ~ X loo X 0.064
do = - —-—

20 X 0.064’+ m X 10 X 0.032 =
- 8.80 in.

T-

In order tO illustrate the procedure used in general cases,
the solution will he carried through starting from fuhda-

1 mental principles.

.-
The load P is assumed to act at an unknown distance

d. There are then three ~knowns: TN , T~ 9 and d. To

b find these unknowns, there are available the static equations
ZT=O and ZM = O and the elastic equation 6 = O.

-.
~v = qNh - qWh+ P = O ..— . .

ZM (about the wel) = qNhe - Pdo = O

—

Numerically

qN x 20 - qw x20+5,000 =0

qN x 20. X 15.’71 - 5,000 do = O

. eG= 1 [“q fl~
2 X 157.1 0.064

x l-rx 10+ —
0.032 1

x 20 = 0“

These three equations are solved and yield.

~~=- 140.1 lb./in.; qw = 110.0 lb./in.

do=- 8.80 in (a)
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The shear intensities just obtained are” thqse associated
with bending caused %y a load 1? applied at the shear cen-
ter. The actual load is applied. at d.= 5, so that there
is a tor~ue

T = -.5,000 (5 + 8.80) = ~ “69,000 ins-lb.

giving a shear intensity

~ . _-MJXM2— . z~g.a

2 x 157.1 “:”

The total shear. intensities are then .

q~ = - 140.1 + 219.8 = 79.7

and

and

q~
‘N = 0.064 =

1,245 2%,/sq.in.

qiv= 110.0 -I-219.8 = 329.8

Tw =
q~

–- = 10,500 lb./sq.inD
0.032

(b)

(c) Changes caused by buclslipg in flat we~.- ‘iThentho
flat web 3s allowed to, buqklo into a full diagoaal-tension .
field, the effective thickness becomes.

to = ~ t =.: x 0.032 =“0,020 in...

In order to evaluate the angle of tWist e, tt is necessary ‘
to oltain an effective shear stress

&T=Te=5, g x 10;300 = 16,500 11)./sq.in.

Substituting this value into the expression for e

6 1
= 1667-G [,

1,244 n X 10 +“16,500 X 201
~ X1,174

‘G
=.293.5 X 19-6 radian per Inch

.

The changed location do of the elastic center is obtatnqd
hy su-ostit.uting te instead of t into formula (11)

. .

.

, .-

:>

.

●

✎

. .
-.t s2 X ~ X 100 X 0.064

do = - -—–- = 10.55 in.
20 x 0,064 + n x &o.x O*OZ ‘. ,
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Example 7 ,-
●

—
—

Find the shear’ stresses and the angle of twist in the
torsion tubo shown in figure 22.b Assume Go = G for all
Walls .

t=.020 t=.o’73 :.

●✎

.

,

?

“i J*
y <—-t=.o5l ‘=’03> 6

Ab=990, h2=20

j,
t=.030

I
I

c

.

~ 23 -+-. 44 -s “~ ..-.

(a)

Figure 22.

.

It will %e necessary to sot up expressions for tho an-
gles of twist e in terms of the shear intensities X and
Y by using formula (4a). As a preliminary stop, tho auxil-
iary paraxmters

—

will ho Conputed, so that formula I(4a) will bo used in the
r.,, form .

6G = ~$ aq
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BOW!S notation is used as ind~cated,

,- 51
-— = “2,550aac = o,o,2~

44
a%d = 57=3

= 602,5

.* =555
ale .

24
—- = 470

aba = 0.051

(Note that aba = aah, )

The expressions for the angles of twist are

eaG = —~– rXX aac + (X - Y) aa~ 1
2xAaL J

1 r-—-— IX X 2,550+ (X- Y) 470
= 2 X 392 L 1

——
b

= 3.85 X - 0.600 Y

~hG = ~~ [yabd + Yabe + Yabf +“(Y - X) aba11——-[Yx602.5+Yx555+YX1 ,467 +(Y-X) 470 1= 2x990 J

-.

.

= 1.562 Y - 0.2376 X

Equating Ga = 8b, obtain

4.088 X = 2,162 Y (a)

The equatiion of moment equilibrium (13) is

X X 2 X 392 + Y X 2 X 990 -250,000 = O (b) ,

.
.

,

—

. .
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The solution of these tyo equations is

x= 55.3 lb./in. Y = 104.5

The shear stresses are, therefore

l-b. /tn.

.“35

T x= !55,3
ac=t

2,765 1%./sq.in.
0.020 =

~ &~ =
‘bd = + =

1,431 lb./sqain*
0.073

.x=Lw
‘be t 0.036 =

2,900 lh./sq.in.

~Tbf = ~ = &04.5 = 3,480 lb./sq.in.
0.030

T x -Y= 49.2-— =. 965 lb./sq.in*—.—
ab = t o.051

The angle of twist is obtained by substituting into the
expros~ion for ea.—

~ [3.850 %=GL=

With G =4X106 this

e = 37.6 X 10-6

x 1- 0.600 Y = ~ X 150.3
J

value becomes

radian per inch length,

—

-—

. .



36 N.A. C.A. Technical Note No. 691

Example 8 .

Find- the shear stresses in. the section shown in ff.g-
ure 23. This section is identical with the one used In
example ‘i’,except that trvo flanges have been added to take

4

oare of beam action.

(a)

..-

.

8
._

d~ 1- f

(b)
● Figure 23,

The parameters a can be taken from the preceding
example.

‘The shear intensity caused by the load P acting on
the shear web is

.
~ S5000

~w = h = ~ = 208~2 12’/in*
“

The expressions for e are now written exactly as in ex-
ample 7 except for the addition of qW.

s.
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.

,

r
6aG = ~~~

1
X X 2,550 -I-(X - Y + 208.2”) X 4701

= 3.85 X - 0.600 Y -I-124.96 .

eb~- s Z*
[
Yx602.5 + Yx555 + Yx1467 + (Y-X-20~.2) X 47Q1

...
=1.562 Y - 0,23,76 X - 49.5 -.. .

Equating OaG tO. 6bG gives

4.088 X - 2.162 Y + 1?4.4’6 = O (a)

The equation of moment equilibrium is tak~n around the
shear web, to eliminate one term.

X X 2 X 392 + Y X 2 X.990 - 5,000 X 46 =0

Solving equations (a) and (1), o%tain
.

x = 15.5 Y = 110.1

The shear stresses are therefore

.
, J= . 775 lb./sq,.in.

0.020 -.

~=
0.073

1,510 lb./sq.in.

110.1 = 3,060 lb./sq.in.
0.036

~~ .
0.030

3,670 1%./sq.in.

.35.5 s 110.1 + 208.2 = z 226 ~hO/sqain,
0.051 *

..

“ (1))

.- .—

. ——

Example 9

For the section used in example g, find the shear

-.

center, and ana~yse tho load ‘case of example 8 %y the shear-
cen’ter method.

T*TO equations are obtained by equating to zero the ex-
> pressions for ea and %; which are taken from example

8.
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F.-=

3.85 X - 0.600 Y + 124.96 = O

-0.2376 X + 1.562 Y - 49,5 = O

The solution of these equations gives the shear intensi- .
ties associated with torsion-free bending* .

x. -28.2 X%./in. y = 27.42 lb./in.

The distance do of the shear cent-er from the shear we%
is obtained %y writing ZM about the shear web

-5,000 d - 28.2 X 2 x 392 + 27.42 X 2-x 990 = O

do = 6,44 in.

A load P located at d = 46 inches. will therefore causo
a torque

-F(d - do) = -5,000(46 - 6,44) = -197,800 in.-ll).

The st~essos TB due to bending are obtained from ~ and h

Y as before,

Tho strossos
‘T due to the torque of—-l97,8OO In.-lh.

are obtained by multiplying the stresses from axe.mple 7 by
.

197’80cI= 0,791...-
250000

9 The final stress’es T are obtained by suyeryosition as
qhown in tho following table.

m
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. Example 10

Eor the section shown in figure 24, find. the shear
stresses. The section is identical with that shown in

,figure 22 except for the flanges. The load is assumed to
be perpendicular to ”the”neutral-”axis. The incli~ation of
the shear webs is tieglected.

.

~ P=5,000

Al=l.85
-j~

— d=2 ...._
A2=l.65

Al

o
Al ‘ ~al A2

(b)
Figure 24.

.—

.

-.

Imagine the cover to be slotted in %oth cells as in- ‘
dicated, ”lea’ving a structure cotisi,s’ting ‘of two spars . The
vertical shear is divided between these two spars in tho
ratio of their moments of inertia.

11’ = + x 1.85 x 242 = .533 in. ~

Ia =’“$”x ‘1.65 X 20a.”= .330”.in;4

—,
I = II -I-12 = !363 .in.4
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Therefore
II

S1 .PX, T = 5,000 x ::: = 3,090 lb.

,

Sa =Px+ = 5,000 x ;:: = 1,910 lb.

s~ 1910 =
qa = -—-

~=20
95.5 lb./in.

Prococding as in the previous cases, write the expressions
for ea and e~ ,

ea=~
[2 X 392 ,
2,550 X + 47o (X - Y’+ 128.8) 1

= 3,85 X -- 0.600 Y -I-77.3

[
~b-d U-be

$’
ii~ ff~ ti

03 s -~-–
2x990 L

602.5 Y+ 555(Y+95.5 )+1,467 Y+ 470(Y-X-128.8) 1
= 1.562 Y - 0.2376 X -“3.8

Equating ~a to 63, o%tain

4.09 x - 2.162 Y +“”81.1 ~ O ‘

The equation of moment equfli%rium gives

-5,000 X 46 + 1,910 X 44 -I- 2 X 392 X + 2 X 990 X Y = ~

Solving these twaequations, obtain

x = 15.9 lb./in. Y= 67.5 lb./in.

The shear stresses are therefore

x
‘ac = — “= 795 lb./sq.in.

0.020

Y—-
‘%& = (3.073 = 925 lb./sq.in. . .

,
.

%

—

-.

,

. .b
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r

+-

1

----

.

J

,.-,

4

.

“.
.
.

.

,’:. ”

,.
T

.y+qz.’

be = 4,530 lb. /sq. in.
0.036 = .

T>f = Y 2,250 11. /sq. i”n.
0.030 =

41

x.+ql -Y...
,... . .. ‘at = 1,?13 l@. /sq~in. “

o.051 =;“.,““ . .
,,J

Example 11

.-

Firid the shear cen%er~ an& the shear stresses associ-
ated with torsion-free bending, for the section shown in
figure 24.

.. ,,. .-”—

Take the expressions for 6a and, 6% from the pre-

ceding example and equate each one “to .ze:ro.
. .

..

.3..85X - 0.600 Y + 7’7.3 ~.O
. .

-0.2376 X + 1.562 Y - 3.8.=-0.. .

solving .,, “ - ,

x = -20.2’”lb./i.n. Y = ‘-0.635 lb./in.

The ,sheqr stresses are therefore;.- -,-

,
T“’ T“-

“20.2 =..
ac = u1,O1O lb./sqoin.

0.Q20

0.635l~d =’= ~~ = -9 lb./sq.in. ~
. .-

-0.635 + 95.5
Tbe = .—— 2,640 ‘lh./sq~in.

0.036 =
.

Tbf = -0.635 = -21 lb./sq.in. .
0.030 .

. -20.2 -I-128.8 -!-0.6~ =
‘ab = ‘–-–— 2,140 1%./Sq.in.

0.051 ~ -—

Leaving the location.” d of. the load P undetermined,
write the moment equation

ZM = -5,000d -I-1,91ox44 - 2x392x20.2 - 2x990x0.635 = O
.

~~$“(
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which gives as location of the shear center

d.= 13.39 in. behind front shear web

,,

Example 12

For the seotion analyzed in examples 10 and 11, find
the stresses if the section is a root section that is rig-
idly lnzilt in. The length L of the beam is 200 inches;
the load P is applied at the tip.

The first step is to separate the load on the entiro
section into
ment is

M=

According to

bending moment and torque. The bending mo-

PL = 5,000 x 200 = 1,0(?0,000 in,-lb.

example 9, the shear center is locate-d at
do = 6.4~ ~~ches,- -and the torque is

T= P(d --do) = -197,800 in.-lb. .

The effects. of restraint against warping will be calcu-
lated under the assumption that only the approximately
rectangular cell % between the four main fittings is re-
strained against war~i.ng and that the nose par% has no
influenco on theso ~arping stresses.

According to example 7, a torque of 250,000 in-.-lb.
creates a shear intensity Y = in Coil -b.1.04.5 lb./in.
The existing torquo of.’”l9’7,8OO.in.-lb. will therefore givo
a shear intensity

.

197800 =
q.% = ‘04.5”x 5Rimti

82.8 ‘lb./in.

The torque carried by cell b
.—

.is therefore (approximately)

T3 = 82.8 X 2 X ggo = 164,000 in.-lb.

With the average. vaiues

b=,, 44 tn. 0.0’73 + 0,030
‘h = —----2

24 + 20
c 0.051 + 0,036= -— = 22 ill. tc = –

2 2

= 0.0515 in.

= 0.0435 in.
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1.’75sq. tn.

The normal force on the flange due to torque
formula (22)

x. 0.56 16400Q (855 - 506) y=; =
44 x 22, .

,

43

becomes, by

1,190 lb.

.“. .
,.

/ and the correction for shear intensity becomes, by formula
.

(23)

164000Aq.— ~855 - 506)-= 21.y5”l%./i~.

2 X 44 X 22 (855 -I-506)
.. .

The bending stresses due to the behding moment are, in the
front flanges,

. ,,
* 1000000 x 12 =013 = ---.——— *13,900 lh./Sq.in.

—

and, in the rear flanges, .. t
. . ,. . -.

(J2B =
~ 1000000S A AII,580” lb./sq.in.

863 ,,
.

the upper sign applying to the upper flange tn each case.
J The bending stresses due to torque are*

i

,.

.

.-

the upper sign applying to the upper flanges. T.h~ final

stresses are therefore. - -- . .-...

““ulu = -13,900 + 643 = -13,257” lb’./sin~n~
,“

CIL = 13,900 - 643 = 13,25’7 lh./sq.in.

‘2U “= -11,580 - 721 = -12,301. lb./sq.in.-,-. —

‘2L = 11,580 + 721 = 12,301 1%./sq.-in.
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The shear stresses for the section free to war~ are ob-
tained from example 10. Superposing the corrections

.

Aq
A+ = ~– gives the final shear stresses *

‘ac = 795 + o = 795 111./sq.in.

‘ha = 925 - 21”75 = 627 1%./sq.in.
0.073

‘%e = 4,530 +~g = 5,134 lb./sq.in.
●

T?3f . 2,25o - ~fi . 1,525 lb./sq.in.
0.030

Tba = -1,513 -f-;1;;;. = -1,C8? lb./sq.in.
●

The corrections influence the design of the rear spar more
critically than ‘the front spar. The correction on the
flange stress is somewhat over 6 percent; on the web shear
stress, it is somewhat over 13 percent.. An error of- 25
percent on tho correction \Youlrithoreforo cause an error
of 1-1/2 percent on the flange stress and an error of 3
percent on tho web shear stress.
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